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Purpose. The objective of the study is to develop a model to estimate the solubility ratio of two

polymorphic forms based on the calculation of the free energy difference of two forms at any

temperature. This model can be used for compounds with low solubility (a few mole percent) in which

infinite dilution can be approximated.

Methods. The model is derived using the melting temperature and heat of fusion for apparent

monotropic systems, and the solidYsolid transition temperature and heat of transition for apparent

enantiotropic systems. A rigorous derivation also requires heat capacity (Cp) measurement of liquid and

two solid forms. This model is validated by collecting thermal properties of polymorphs for several drugs

using conventional or modulated differential scanning calorimetry. From these properties the solubility

ratio of two polymorphs is evaluated using the model and compared with the experimental value at

different temperatures.

Results. The predicted values using the full model agree well with the experimental ones. For the

purpose of easy measurement, working equations without Cp terms are also applied. Ignoring Cp may

result in an error of 10% or less, suggesting that the working equation is applicable in practice.

Additional error may be generated for the apparent enantiotropic systems due to the inconsistency

between the observed solidYsolid transition temperature and the true thermodynamic transition tem-

perature. This inconsistency allows the predicted solubility ratios (low melt/high melt) to be smaller.

Therefore, a correction factor of 1.1 is recommended to reduce the error when the working equation is

used to estimate the solubility ratio of an enantiotropic system.

Conclusions. The study of the free energy changes of two crystalline forms of a drug allows for the

development of a model that successfully predicts the solubility ratio at any temperature from their

thermal properties. This model provides a thermodynamic foundation as to how the free energy

difference of two polymorphs is reflected by their equilibrium solubilities. It also provides a quick and

practical way of evaluating the relative solubility of two polymorphs from single differential scanning

calorimetry runs.
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INTRODUCTION

Organic compounds can exist in different crystal mod-
ifications (1). In fact, crystal polymorphism is a rather
common occurrence for organic compounds. Because differ-
ent polymorphs correspond to crystal arrangements with
different free energies, their equilibrium solubilities are
necessarily different. In pharmaceutical industry, a crystalline
form with greater solubility is typically a more favorable
candidate because it, based on the NoyesYWhitney equation
(2), implies a possibly higher dissolution rate and, hence,
bioavailability. As solubility measurement requires relatively
large sample size and sometimes the true solubility value is
masked by solvent-mediated transformation, it is desirable to
have an optional approach to evaluating relative solubility of

polymorphs from their thermal properties, such as melting
temperature and heat of fusion. Such an approach uses less
sample and is potentially more accurate because measure-
ments of these thermal properties can typically be performed
with differential scanning calorimetry (DSC) and therefore
are less likely influenced by kinetic processes, whereas the
solubility value, in essence, is a true manifestation of the ther-
modynamic conditions.

The work presented here focuses on building a thermo-
dynamic model that allows the evaluation of solubility
relationship of polymorphs from a routine DSC run. The
solubility difference in two polymorphs roots in their
different free energy levels DG. There have been many
studies on correlating thermodynamic stability relationship of
polymorphs from solubility measurements (3,4). It is there-
fore feasible to derive solubility relationship of polymorphs
from thermodynamic data using the same sets of thermody-
namic equations. Crystal polymorphs can be monotropically
or enantiotropically related. Monotropic systems are those in
which the stable form at absolute zero remains as the stable
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form up to the melting point. In contrast, enantiotropic
systems are those in which there is a solidYsolid transition at
a temperature below the melting point, such that one form is
thermodynamically stable below the transition temperature
and the other form is stable at temperatures above the
transition point. Figure 1 shows the free energy diagrams of
monotropic and enantiotropic systems. It needs to be pointed
out that free energy of two solid forms do not necessarily
converge with increasing temperature, as is the case in the
figure. There are systems where two free energy curves
diverge with temperature from absolute zero (5), but this is
regarded as a special case in monotropic systems.

It is obviously observed from the diagram (Fig. 1) that
the relative solubility of two polymorphs is temperature
dependent because DG changes with temperature. To deter-
mine the solubility at all temperatures, one needs to find
critical points at which DG between two phases is zero. This
implies that monotropic and enantiotropic systems will have
two different sets of equations because the solidYsolid
transition can be conveniently used for enantiotropic systems
but not for monotropic systems.

The present work will also discuss the role that heat
capacity (Cp) plays in the model. Heat capacity [related to
the second derivative of the G(T) diagram], incidentally,
contributes to the temperature dependence of the solubility
relationship of polymorphs. In this work a set of working
equations devoid of Cp terms will be provided and compared
with the full models to verify the effect of Cp on solubility
determination.

THEORETICAL SECTION

The solubility of organic nonelectrolytes is given by the
following expression:

log X ¼ log X ið Þ � log + ð1Þ

where X is the observed mole-fraction solubility, X (i) is the
ideal solubility, and g is the activity coefficient. The ideal
solubility is a property of the solute alone and is the same for
all solvents. The expression for the ideal solubility (6) is given
by:

ln X ið Þ ¼ � $Sm Tm � Tð Þ
RT

þ 1

RT

Z Tm

T

$CpdT � 1

R

Z Tm

T

$Cp

T
dT

ð2Þ

where DHm, DSm, and Tm are the solute’s enthalpy, entropy,
and temperature of melting, respectively, T is the temperature,
R is the gas constant, and DCp is the difference in heat capacity
between the solute’s liquid and solid phases (Cp[liquid] j

Cp[solid]). For many practical applications, the ideal solubility
is calculated from Eq. (2) without the heat capacity terms.
The heat capacity terms are typically regarded as being small
in comparison to the first two terms on the right-hand side of
the expression. In addition, these two DCp terms, having
opposite signs, tend to cancel each other.

In this report, the theoretical treatment is presented
using the full expressions with practical simplifications
applied at the end. For purposes of simplicity in the follow-
ing discussion, Eq. (2) will be expressed in the following
alternative form:

lnX ið Þ ¼ � $Hm

RT
þ $Sm

R
þ 1

RT

Z Tm

T

$Cp dT � 1

R

Z Tm

T

$Cp

T
dT

ð20Þ

with this slight change in notation, all solubility expressions
used in the following discussion have the same form.

The activity coefficient g accounts for the deviations
from ideal solution behavior of the solute in the particular
solvent and is dependent on the solute and solvent combina-
tion. For low solubility values, the observed solubility in
mass/volume units, S, can be approximated by the following
expression:

log S ¼ log X ið Þ � log +þ C ð3Þ

where C is a constant whose value depends on the solvent
(1.7 for water). Equation (3) is a good approximation in cases
in which the mole fraction concentration of the solute is small
compared with that of the solvent (a few mole percent).

The activity coefficient varies with the solute’s concen-
tration. However, for low concentrations, as is the case when
the solubility is low, the activity coefficient can be considered
constant and equal to its infinite-dilution limiting value. The
treatment presented here is therefore applicable to those
cases in which the solute exhibits rather low solubility. In a
strict sense, the condition necessary for the last two terms in
Eq. (3) to be treated as constants is that the volume occupied
by the solute in the solution be negligibly small compared
with the volume occupied by the solvent. Such a situation,
nevertheless, covers a vast number of cases.

In this report we explore the relationship in solubility
between crystal forms from their thermodynamic relation-
ship. In the case of two polymorphic forms, 1 and 2, their

Fig. 1. Gibbs free energy-temperature diagram for monotropic (top)

and enantiotropic (bottom) systems.
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solubilities are related in the following fashion, provided the
infinite dilution assumption holds:

log
S1

S2
¼ log X

ið Þ
1 � log +þ C � log X

ið Þ
2 � log +þ C

� �

¼ log
X

ið Þ
1

X
ið Þ

2

ð4Þ

This means that the difference in solubility between
polymorphs is a direct result of their different ideal solubility
values. In other words, the difference in solubility between
crystal polymorphs is entirely a function of their solid-state
properties. This also means that predictions of relative
solubilities for crystal polymorphs should be possible from
their solid-state properties alone. We should clarify that the
assumption of low solubility is simply used to meaningfully
separate the terms C and g in the above expression. In fact,
the equivalence between the far left- and far right-hand sides
of Eq. (4) will persist even if the values of S1 and S2 are high,
as long as that the two values are close to each other (the
equivalence is exact when S1 = S2 for any magnitude of
solubility, but the solubilities of polymorphs must be
different). We should also clarify that because solubility
calculations are given as the logarithm of the solubility value,
throughout the present discussion, whenever discussing
differences in solubility, the reference is being made to the
difference of the logarithms of the solubility values in
question, which, of course, corresponds to the ratio of the
experimentally determined values.

In the following section, the equations relating the
solubilities between crystal polymorphs are presented for both
the monotropic and enantiotropic cases. However, it is per-
tinent at this early stage to make a very important point:
depending on the temperature of interest, for purposes of sol-
ubility predictions, enantiotropic systems sometimes require
the same treatment as that derived for the monotropic case.
This important point will be addressed in more detail later.

Consider a compound that exists in two different crystal
forms, 1 and 2. In the present discussion, the notation 1 and
2 will refer to the lower and higher melting polymorph,
respectively, whether the polymorphs are monotropically or
enantiotropically related.

Monotropic Case. In this type of system, polymorph 2 is
the thermodynamically stable form at all temperatures in
which a solid phase exists. The solubility expression for the
two crystal forms are as follows:

ln X
ið Þ
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and
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where the subscripts 1 and 2 denote polymorph 1 (metasta-
ble, lower melting) and polymorph 2 (stable, higher melting),
respectively. Equation (4) indicates that the difference in
solubility between the two polymorphs, in any solvent, is the
same as the difference in their ideal solubilities. Thus, sub-
tracting Eq. (5b) from Eq. (5a), after some rearrangement,
gives

ln
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¼ $Hm2 � $Hm1

RT
þ $Sm1 � $Sm2

R

þ 1

RT

Z Tm1

T

Cs
p2 � Cs

p1

� �
dT �

Z Tm2

Tm1

$Cp2dT

� �

þ 1

R

Z Tm2

Tm1

$Cp2

T
dT �

Z Tm1

T

Cs
p2 � Cs

p1

T
dT

� �
ð6Þ

where DHm and DSm denote enthalpy and entropy of melt-
ing, respectively, with subscripts 1 and 2 the same as above,
and the superscript s stands for solid phase.

Enantiotropic Case. In this case there is a transition
temperature, Tt, below which the low-melting polymorph 1 is
the thermodynamically stable form, and consequently, form 2
is metastable. At temperatures above Tt, the high-melting
polymorph 2 becomes the thermodynamically stable form.
For enantiotropic systems, the transition is necessarily from
low-melting form to high-melting form, i.e., 1 Y 2.

Calculation of the ideal solubility corresponds in reality
to the calculation of the free energy change necessary for the
hypothetical melting of the solute at the temperature of
interest, T, instead of at its normal melting temperature, Tm.
To calculate ideal solubility for enantiotropic systems, it is
critical to take into account if the temperature of interest
(i.e., the temperature at which one is going to measure the
solubility) is above or below the transition temperature. In
enantiotropic systems, the solidYsolid transition temperature
is necessarily lower than the melting point of the lower
melting polymorph (Tt < Tm1). If the solid transition occurs,
the melting of the low-melting polymorph (polymorph 1) will
not be observed. Therefore, the expression for the ideal
solubility of the low-melting polymorph should include the
free energy effects of such a transition, giving the following
expression:

ln X
ið Þ

1 ¼ �
$Hm2 þ $Ht

RT
þ $Sm2 þ $ St

R

þ 1

RT

Z Tm2

T
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� 1
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� �
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2
4

3
5 ð7Þ

where DHt and DSt are the enthalpy and entropy of the
solidYsolid transition, respectively. Equation (7) gives the
ideal solubility for the low-melting polymorph (species 1) of
an enantiotropic system. It is worth noticing that except for a
small correction in the heat capacity terms, the expression
above does not include parameters bearing subscript 1 on
its right-hand side. Because the two polymorphs exist in
equilibrium at Tt, it is possible to express the melting pa-
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rameters of one polymorph by a combination of the pa-
rameters of the solidYsolid transition and of the melting of
the other form. This fact, as will be discussed later, is of great
practical value.

For the high-melting polymorph, the ideal solubility ex-
pression is the same as in the monotropic case, i.e., Eq. (5b):

ln X
ið Þ

2 ¼ �
$Hm2

RT
þ $Sm2

R
þ 1

RT

Z T
m2

T

$Cp2dT

� 1

R

Z T
m2

T

$Cp2

T
dT ð5bÞ

The ideal solubility of the high-melting form is the same for
both monotropic and enantiotropic systems because the ther-
modynamic relationship of the high-melting form with the liquid
phase is totally unaffected by the existence of a solidYsolid
transition at Tt. As discussed for monotropic systems, the
solubilities of two polymorphs in any solvent are the same as
the difference in their ideal solubilities. Thus, we have that for
the enantiotropic case, the difference in solubilities for the two
forms, by subtracting Eq. (5b) from (7), is:

ln
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¼ � $Ht

RT
þ $St
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þ 1

RT
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T
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It is worth to mention that the equation above is iden-
tical in form to the ideal solubility expression (Eqs. 5a and
5b). Equation (8) shows that the difference in solubility
between enantiotropically related polymorphs is equal to a
hypothetical ideal solubility quantity such that the solidYsolid
transition temperature replaces the melting point and the
solid phase 2 replaces the liquid phase.

Simplified Equations. Equations (4) through (8) are
general expressions with applicability to any set of poly-
morphs, monotropically or enantiotropically related, in any
solvent. For the practical application of solubility estima-
tions, it is necessary to get simplified, working expressions.
The assumptions made in obtaining the practical working
expressions are listed below:

1. The solubility of the drug can be either high or low,
given the following:

(a) Neither of the two polymorphs is highly
soluble, so that saturated solutions are dilute and the
relationship between X1 and S1 and between X2 and S2

is the same proportionality constant, or
(b) if the polymorphs are highly soluble, then

the two forms have similar solubility.
2. The solid solute remains pure when in equilibrium

with its saturated solution, i.e., the solute and solvent do not
combine to form a new solid phase such as a hydrate or a
solvate.

3. The quality of the crystalline materials used when
applying the methodology described is such that it permits
DSC measurements of typical quality. Namely, it is possible
to conduct melting experiments and determine the corre-
sponding temperature and heat of the event.

4. The contribution of the heat capacity terms to sol-
ubility estimations can be neglected for purposes of solubility
estimation.

The expressions for solubility in the preceding section
are presented without simplifying assumptions. Because the
quality of any prediction is only as good as the applicability
of the simplifying assumptions of the procedure, it is best to
use the general expressions given above as starting point to
make solubility predictions. In this section, simplifying
assumptions will be made to the theoretical (general) expres-
sions of the preceding section to obtain Bworking equations^
for solubility predictions of polymorphic systems. This ap-
proach has, in our opinion, several advantages. It allows for
the use of simpler working equations without a working
disconnection from their theoretical origin and meaning. In
addition, comparison of predicted and observed solubility
values allows for a quantitative assessment of the cost in
accuracy that the chosen simplifications bring about.

Equations (5) through (8) all include heat capacity
terms. Although experimentally measurable, these terms un-
doubtedly complicate the use of the expressions. Yalkowsky
and Banerjee (6) have argued that the effect of the heat
capacity terms (DCp1 and DCp2) in the ideal solubility
expression (Eqs. 5a and 5b) can be considered negligibly
small compared to the first two terms on the right-hand side
of each one of the expressions. The heat capacity terms are
small compared with the first two terms of the equation.
Using this assumption, the following working expressions are
obtained for the ideal solubility of polymorphs 1 and 2:

Monotropic Case

ln X
ið Þ

1 � �
$Hm1

RT
þ $Sm1

R
ð5a0Þ

ln X
ið Þ

2 � �
$Hm2

RT
þ $Sm2

R
ð5b0Þ

and the difference in solubility between two polymorphs that
are monotropically related becomes:

ln
S1

S2
� $Hm2 � $Hm1

RT
þ $Sm1 � $Sm2

R
ð60Þ

For the enantiotropic case, we make the additional
assumption that the heat capacities of the two solid phases
are very similar so that the term Cp2

s
j Cp1

s is also negligibly
small. This additional assumption should bring little error to
the calculation of solubility because it is even better suited
than the first assumption, i.e., the difference in heat capacity
between two solid phases is smaller than that between a
liquid and a solid phase. Using this additional assumption,
we get the following.

Enantiotropic Case

ln X
ið Þ

1 � �
$Hm2 þ $Ht

RT
þ $ Sm2 þ $St

R
ð70Þ

Equation (70) is the working expression for the ideal
solubility of the low-melting form. As discussed in the
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preceding section, the solubility expression for the high-
melting form of an enantiotropic system is the same as in the
monotropic case. Thus, for the high-melting form:

ln X
ðiÞ
2 � �

$Hm2

RT
þ $ Sm2

R
ð5b0Þ

and the difference in solubility between the two forms is
given by the working expression:

ln
S1

S2
� � $Ht

RT
þ $St

R
ð80Þ

MATERIALS AND METHODS

Materials. Flufenamic acid (FFA) was chosen as the model
compound for the studies. FFA was purchased from Aldrich
(Milwaukee, WI, USA). Pure FFA form III was obtained by
dissolving an appropriate amount of FFA as received in toluene
at about 80-C and crash-cooling to 0-C with vigorous stirring.
FFA form I crystals were acquired by storing the dry form of
FFA III crystals in an oven at 115-C overnight and then slowly
cooling to room temperature. The polymorphic purity of form I
was greater than 97% and that of form III was greater than 99%
as determined by powder X-ray diffractometry (PXRD).

Thermal Measurements. The transition temperature,
heat of transition, and heat capacity data of two forms of
FFA were obtained from a TA Instruments (Newcastle, DE,
USA) differential scanning calorimeter with temperature
modulation and equipped with a refrigerated cooling system.
A crimpled pan configuration was used. Modulated DSC
data were obtained using a modulation amplitude of T0.16-C
and a 60-s period with an underlying heating rate of 1-C/min
from 75-C to 150-C. The temperature and the heat capacity
were calibrated using indium metal and sapphire as the
calibration standards, respectively.

Solubility Measurements. The solubility of the two forms
of FFA was measured over several temperatures in diacetone
alcohol/water (40:60 w/w) mixed solvent. Batch experiments
were performed in a tightly sealed 50-mL jacketed glass
vessel shielded from light. Excess solid was added to about
20 mL of solvent, and a magnetic stirrer was used to provide
agitation. A circulating water bath was used to control the
temperature of the solution within T1-C. After equilibrating
overnight, the agitation was halted and an aliquot of solution
was filtered and diluted to a concentration between 10 and
20 2g/g. The absorbance at 339 nm was determined with UV
spectrometry. The solubility was calculated from a standard
curve prepared over the concentration range of 0Y25 2g/g.

RESULTS AND DISCUSSION

General Agreement. The predicted and experimental
solubility ratios of two polymorphs of FFA at different
temperatures are compared in Table I. The predicted and
experimental solubility ratios of other drugs, calculated from
literature data, are also presented. Whenever the heat
capacity values of two polymorphs are available, evaluations
from the general equations (containing Cp terms) and the
working equations (not containing Cp terms) are both listed
to test the assumption that heat capacity terms make only
negligibly small contributions.

Of all the compounds tested, the predicted and exper-
imental solubility ratios are similar. The error of prediction in
most cases is less than 10%. This could partially result from
the experimental errors during temperature and heat mea-
surements. The results show that, in general, the proposed
model can be used to predict the relative solubility of two
polymorphs from their thermal properties for both mono-
tropic and enantiotropic systems. It is, however, important to
point out that due to the logarithm relation in these models, a

Table I. Estimation of Solubility Ratios for Different Polymorphic Systems

Predicted solubility ratio

Compounds, polymorphs No Cp terms With Cp terms

Experimental

solubility ratio Solvent and temperature

Apparent enantiotropic systems

Flufenamic acid form III/I 0.87 0.80 0.96

Diacetone alcohol/water

mixture; 30-C

0.83 0.70 0.92

Diacetone alcohol/water

mixture; 10-C
Carbamazepine form III/I (9,10) 0.67 0.78 0.82 2-Propanol; 17-C

0.73 0.80 0.88 2-Propanol; 40-C

Sulfamerazine form II/I (5,11) 0.85 0.94 0.90 Water; 30-C

Sulfathiazole form a/b (18) 0.46 Y 0.54 Water; 30-C
0.54 Y 0.64 Water; 45-C

Mefenamic acid form I/II (16,17) 0.72 Y 0.78 Ethyl acetate; 25-C

0.72 Y 0.74 Water; 25-C
Lifibrol form II/I (15) 0.27 Y 0.44 Buffer solution; 12-C

Apparent monotropic systems

Carbamazepine form III/I (10) 0.80 0.72 0.82 2-Propanol; 17-C

0.87 0.78 0.88 2-Propanol; 40-C
Indomethacin form a/g (12,13) 1.19 Y 1.1Y1.2 Water; 45-C

MK571 form II/I (14) 2.61 Y 1.9 MEK; 35-C

2.45 Y 2.1 MEK; 45-C
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small variation in experimental values might lead to a rel-
atively larger error in the resulting solubility ratio.

For an enantiotropic system, the solidYsolid transition
may or may not be observed during a routine DSC run. The
heating rate can alter the kinetics of these transitions such
that they may be inhibited. In such cases the enantiotropic
system becomes an Bapparent monotropic system.^ The rela-
tive solubility of its polymorphs, therefore, needs to be esti-
mated using the equations derived for monotropic systems.
An interesting case is that of carbamazepine, for example
(Table I). Depending on the experimental conditions, such as
the heating rate chosen for the DSC analysis of the material,
the solidYsolid transition of carbamazepine can be kinetically
inhibited, such that it may or may not be observed. Table I
shows the two sets of solubility ratios for carbamazepine
calculated using both the monotropic and enantiotropic case
equations. The results show that both models can predict the
solubility ratio within reasonable margin of error. One may
also notice that the enantiotropic systems, in most cases,
exhibit smaller estimate solubility ratios than the experimen-
tal values. The reason for this trend is discussed in detail in
the next sections.

Discussion on Enantiotropic Equations. Unlike solidY
liquid transition that always occurs at thermodynamic
melting temperature, the solidYsolid transition among organ-
ic polymorphs is more susceptible to kinetic processes and
frequently observed at a temperature higher than the ther-
modynamic transition temperature. Consider the case where
during a DSC run, the solidYsolid transition is observed at
the temperature Tt

0 that is greater than the thermodynamic
temperature Tt, i.e., Tt

0 > Tt. The solubility ratio of two
polymorphs, based on Eq. (8), would be

ln
S1

S2

����
T
0
t

¼ � $H0t
RT
þ $S0t

R
þ 1

RT

Z T 0t

T

ðCs
p2 � C s

p1ÞdT

� 1

R

Z T 0t

T

ðC s
p2 � C s

p2Þ
T

dT ð8*Þ

The enthalpy and entropy of transition at this temper-
ature, DHt

0 and DSt
0, are related to their corresponding values

at the thermodynamic transition temperature, DHt and DSt,
with the following relations:

$H0t ¼ $Ht þ
Z T 0t

Tt

Cp2 � Cp1

� �
dT ð9Þ

$St ¼ $St þ
Z T 0t

Tt

Cp2 � Cp1

� �
T

dT ð10Þ

By combining Eqs. (9) and (10) with Eq. (8*), we have

ln
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S2

����
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þ $St

R
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Z Tt

T
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p2 � Cs
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� 1

R

Z Tt

T

Cs
p2�Cs
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� �

T
dT

¼ ln
S1

S2

����
Tt

ð11Þ

Equation (11) shows that the model derived for the
enantiotropic systems Eq. (8) holds true regardless of the
temperature at which the solidYsolid transition is observed.
However, this expression, when applied at Tt

0 > Tt, becomes
practically less applicable. When the polymorphic transition
is observed at a temperature higher than the true thermody-
namic transition, the true value of entropy of transition, DSt,
is not directly measurable by DSC. In these cases, the
relationship between the observed temperature and heat of
transition and the true entropy of transition, is as follows:

$St > $S0t ¼
$H0t
T 0t

ð12Þ

where the prime-superscripted quantities correspond to the
values observed from the DSC measurements.

The validity of the relation DSt = DHt
0/Tt

0 would dictate
a thermodynamically reversible process by which the transi-
tion free energy, DGt, is zero. This assumption holds true only
if Tt

0 = Tt. When Tt
0 > Tt, DGt

0 becomes negative and DSt has
to be expressed using the following relation:

$St ¼
$H0t � $G0t

T 0t
ð13Þ

It is important to clarify at this point that the ratio of
solubilities between two enantiotropically related poly-
morphs is completely unaffected by the temperature at which
the solidYsolid transition is observed by DSC, even if such
transition is not observed at all. The only thing that changes
by having Tt

0 m Tt is the error involved in DSC-based
solubility estimates.

The irreversible transition free energy DGt
0 cannot be

readily measured from DSC experiments. The best possible
estimate, therefore, can only be made by combining Eqs. (8*)
and (12), i.e., by assuming a reversible transition. This small
conundrum is the direct result from the assumptions regard-
ing the role of heat capacity terms in the estimations of
solubility. In short, using the nonequilibrium (i.e., as mea-
sured by DSC) heat and temperature of the solid transition to
estimate the entropy of the transition involves an error. The
correction for this error can be made, exactly, by including
the heat capacity terms, but it is well established that for the
overall estimation of solubility, the heat capacity terms can
be neglected. The question is then how much error is brought
about by knowingly applying the experimentally determined
(by DSC) heat and temperature of transition into the
solubility estimations.

The solubility ratio resulting from this approximation
would necessarily be smaller than the true value due to the
following relation derived from Eqs. (8*), (12), and (13):

ln
S1

S2

����
Est
¼ ln

S1

S2

����
True

þ $G0t
RT 0t

ð14Þ

where ln
S1

S2
j
Est

and ln
S1

S2
jTrue are the estimated and true solu-

bility ratio of enantiotropic systems, respectively, and the
irreversible transition free energy DGt

0 is necessarily a neg-
ative value. This relation, indeed, agrees with the experimen-
tal results. The estimated solubility ratios for enantiotropic
systems (Table I), in most cases, are smaller than the ex-
perimental values. The magnitude of the difference depends
on the degree of deviation of Tt

0 from Tt and the change
of (S2 j S1) with temperature. From the experimental result,
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it seems that this difference is less than 15% in most cases.
The error of this magnitude, for sparingly soluble materials
available for this model, will not significantly affect the
decision making.

Effect of Cp. Because the accurate measurement of Cp

requires additional experimental work, the general assump-
tion is that the effect of Cp is negligibly small and tends to be
discarded without generating significant error (6). The same
assumption, supported by the fact that the effect of DCp

integrals (which appear as pairs with opposite signs), of
magnitude significantly smaller than DH, was applied in
estimating the thermodynamic relationship of the poly-
morphs (4,5). The experiments show that the estimates,
without considering DCp terms, led to a variation of the final
solubility ratio by approximately 10%. This suggests that in
most cases, the contribution of DCp terms is small enough to
be neglected in determining the relative solubility of poly-
morphs with low solubility.

For enantiotropic systems that do not show the solidY
solid transition at the true equilibrium temperature (a very
common occurrence), the absolute value of the first DCp

term, 1
RT

R T 0t
T

�
Cs

p2 � Cs
p1

�
dT, is necessarily greater than the

second DCp term, 1
R

R T 0t
T

Cs
p2
�Cs

p1

� �
T

dT Eq. (8*). Burger and
Ramberger (7) argued that based on a statistical thermody-
namics model, for polymorphs A and B, with A being more
stable at 0 K, (CpB j CpA) is always positive. In enantiotropic
systems, polymorph A is the low-melting form and poly-

morph B is the high-melting form, so (Cp2
s

j Cp1
s ) is in theory

always a positive number for enantiotropic systems. Fur-
thermore, for most practical cases, the temperature at which
the solubility is estimated, T, is lower than the observed
transition temperature, Tt

0. Therefore, the estimate of sol-
ubility ratios of enantiotropic systems with the full equation
Eq. (8) should result in a greater number than the estimate
with only the working equation without DCp Eq. (80). It is,
however, important to remember that there are exceptions
to the heat capacity rule, as in the case of flufenamic acid
or paracetamol (8). The above conclusion applies for most,
but not all, enantiotropically related polymorphic forms.
Based on these studies, it is recommended that one may
correct the solubility ratio of enantiotropic systems
estimated from Eq. (80) by a factor of õ1.1 to reduce the
error resulting from the discrepancy between Tt and Tt

0 and
the negligence of DCp terms.

Practical Use of the Model. The practical significance of
this model lies in its ability to evaluate the relative solubility
of two polymorphic forms of an organic compound within a
reasonable degree of accuracy. One may choose from the full
equations or simplified working equations depending on the
time, sample quantity, and equipment availability. Such a
solubility ratio can be quickly estimated by conventional
DSC runs, or it can be estimated with increased accuracy
through Cp measurements using a modulated DSC. The first
step toward the practical use of the model is to identify

Fig. 2. A decision tree to estimate the solubility ratio of two polymorphic forms using the quantitative model.
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whether the systems are apparently monotropic (no solidY
solid transition is observed during the DSC run for both
forms) or apparently enantiotropic (an endothermic transi-
tion is observed for the low-melting form before melting
during the DSC run). These two different systems are treated
with two different sets of equations for their solubility ratio
evaluations. For apparent enantiotropic systems, a correction
factor of 1.1 is used if the working equation is chosen for the
estimation. The entire process is illustrated in the format of a
decision tree as shown in Fig. 2. This factor of 1.1 is by no
means universal, but it corresponds to a reasonable correc-
tion based on experimental data as well as on published in-
formation, which is rather limited. However, one important
consideration is that for enantiotropic systems, the amount of
heat evolved during the solidYsolid transition (DHt

0) is not
any arbitrary number. The heat evolved is actually fixed, in
relation to the true equilibrium value, by the temperature at
which the event is observed (Tt

0).
In summary, a system of polymorphs can be monotropic

or enantiotropic. This is an immutable property of the
system. In practical terms, however, estimating the solubility
of polymorphs depends on what solid state parameters are
experimentally accessible in the laboratory. When the solidY
solid transition of an enantiotropic system is not observed, the
equation for the monotropic system can be applied, simply
because of the type of experimental parameters available in
such a case. However, this does not mean that enantiotropic
systems in which the solid transition is not observed will be the
same in all observable ways to monotropic systems. Table II
lists the different situations that can be encountered while
applying the flow chart of Fig. 2. The left-hand side of the
table lists the type of experimental situations that a user could
face in the laboratory. The right-hand side of the table shows
the underlying relationship and the working expression to
apply in each case.

CONCLUSIONS

The solubility relationship of two polymorphic forms
may be predicted from their thermal properties. For apparent

monotropically related polymorphs, the melting temperature
and heat of fusion of two forms are needed to make the
estimate, whereas for apparent enantiotropically related
forms, only the solidYsolid transition temperature and heat
of transition are needed. A rigorous model requires the
measurement of heat capacity of solids and liquid forms.
However, one of the objectives of this work is to link theory
with practice, leading to the actual application of the equa-
tions in the typical preformulation and early development
laboratories. Ignoring heat capacity terms typically leads to
an error of only 10% or less. For apparent enantiotropic
systems, the deviation of the observed transition temperature
from the thermodynamic transition temperature may give
rise to some additional error of 15% or less. Therefore, a
correction factor of 1.1 is recommended to reduce the error
of enantiotropic systems when the working equation is used.
Because the observed (nonequilibrium) heat and tempera-
ture for solid transition in enantiotropic systems do not vary
independently from each other, future studies will be able to
show how well a general one-value correction factor works in
practice.
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